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1. INTRODUCTION

The free vibration of a simply supported beam with a constant cross-sectional area carrying
a concentrated rigid mass at the mid-point of the beam has been studied in two manners:
The "rst way treated the problem as a single-degree-of-freedom system by neglecting the
mass of the beam [1]. The second method included the mass of the beam and treated
the con"guration as a continuous elastic system [2}4]. In these treatments only the
symmetrical vibration of the beam was considered.

Restricting this system to vibrate in symmetrical modes simpli"ed this problem and made
unnecessary any consideration of the rotatory inertia of the mounted mass. But if this
system is excited by a force applied anywhere on the system other than at the mid-span, or
by a couple, antisymmetric vibration modes will be produced.

In this study, this problem is approached from the general case, allowing the
concentrated mass to de#ect in the z direction and also to rotate about its central axis which
is parallel to the y-axis in Figure 1. A general solution including both the rotatory inertia of
the beam and of the concentrated mass is obtained by applying elementary beam theory in
which the e!ect of transverse shear deformation is neglected. The latter e!ect may be
signi"cant but was omitted both for simplicity and because it was desired to isolate the
e!ect of rotatory inertia.

The solutions with the rotatory inertia of the beam being neglected are deduced from the
general solutions. The antisymmetric mode frequencies for two extreme cases of mounted
mass are discussed. Roots of the frequency equations are obtained and plotted for certain
ranges of parameters involving the ratio of the concentrated mass to the mass of the beam
and its moments of inertia.

2. FORMULATION OF THE PROBLEM

The reference co-ordinates for this system are oriented as shown in Figure 1. The
xy-plane coincides with the neutral plane of the unde#ected beam. Consider the whole beam
as two spans each of length l/2.

The positive values of bending moment M, shear force <, de#ection=, and rotation h of
the beam are shown in Figure 2. The subscripts 1 and 2 indicate the corresponding spans.
When no subscript is given, they apply to both spans.
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Figure 1. The co-ordinates of the system.

Figure 2. The conventions.
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The equation for the lateral vibration of the beam may be given in the following form [5]:
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E is the modulus of elasticity, o, the mass density, and I
b

is the moment of inertia of the
beam with cross-sectional area A, hence s is the radius of gyration and t is the time.

The boundary conditions at both ends of the beam are that the de#ections and moments
vanish:
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The conditions of continuity at the middle are that the de#ections are equal and slopes
equal but having opposite directions:
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By applying the equation of motion in the z direction to the free body of the concentrated
mass, m at the mid-point as shown in Figure 3,
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Figure 3. The free body of the concentrated mass.
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where F
z
and a

z
are force and acceleration of the mass in the z direction respectively. One
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which, by using equation (6), becomes
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The equation for rotatory motion of the concentrated mass about its central axis and
parallel to y-axis is
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in which a is the angular acceleration, takes the form
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where r is the radius of gyration of the mounted mass with respect to its central axis.

3. THE GENERAL SOLUTION

Using the method of separation of variables, let
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Equation (1) results in
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where a prime indicates di!erentiation with respect to x, a dot with respect to time t, and
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where p
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is the circular frequency.
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The solutions of equations (9) and (10) are, respectively [6],
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By using solutions (15) and (16), conditions (5) and (6) become
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The equations of motion (7) and (8) take the forms
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From the above four equations, the frequency equation is obtained for the non-trivial
solution of four constants involved, and has the following form, since a
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This equation may be separated into two parts, each of which is equated to zero. The "rst
part is
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From the four equations (19)}(22), the following ratio is obtained:
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From equations (19}22) and using equation (24), one has
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Substituting this result into equation (26), one obtains

D
1n

/D
2n
"1 or D

1n
"D

2n
. (28)

Then, the normal functions (15), (16) take the forms
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Thus, the normal mode functions resulting from the use of frequency equation (24) are
symmetrical with respect to the middle point of the beam; equation (24) is, therefore, termed
the frequency equation for symmetric modes.

If instead of equation (24), equation (25) is used in equation (26), the ratios become
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For these ratios, the mode functions take the forms
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These vibration modes have a nodal point at the middle of the beam and are
antisymmetrical with respect to this point. These modes, therefore, are referred to as
antisymmetric modes, and equation (25) is called the antisymmetric mode frequency
equation.

The determination of the roots of the frequency equations (24) and (25) will be discussed
later. However, it should be noted that these roots when arranged in ascending order arise
alternately with the lowest, or fundamental root being derived from equation (24). Thus, the
symmetric modes are associated with n"1, 3, 5,2, and the antisymmetric modes with
n"2, 4, 6,2 .

The "nal solution for lateral vibration of the "rst half span of the beam is

=
1
" +

n/1,3,5,2
(A

n
cos p

n
t#B

n
sin p

n
t)X

1n
# +

n/2,4,6,2
(A

n
cos p

n
t#B

n
sin p

n
t)X

1n
. (36)

The constants A
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are to be determined by initial conditions. The normal functions,
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have been determined by equation (29) for odd n and equation (34) for even n. When
equations (30) and (35) are used for X
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When the rotatory inertia of the beam is neglected, s/l"0; hence, from equation (14),
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The normal mode equations for the symmetric case are
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and for the antisymmetric case they are
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The "nal de#ection solutions are the same as given in equation (36).
Equations (37) and (39), (40) agree with the results presented in reference [3].

4. DISCUSSION OF FREQUENCY EQUATION

It will be shown that the e!ect of the rotatory inertia of the beam vibration is appreciable
for second and higher modes only, the discussion given will be for the basic mode with this
e!ect neglected.

Furthermore, since the discussion of the frequency equation associated with the
symmetric mode vibration has been given in reference [2], the antisymmetric frequency
equation alone will be discussed herein.

4.1. APPROXIMATE FORMULA FOR THE LOWEST ANTISYMMETRIC MODE FREQUENCY

The frequency equation for antisymmetric modes, equation (25) may be written as
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Substituting these series into equation (43), one has
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It will be shown later that the results obtained from this simple formula are quite
satisfactory.

From equations (11), (17) and (44), the circular frequency is
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This result may also be obtained by considering the problem as a single-degree-of-
freedom system as shown in Figure 4.



Figure 4. A single-degree-of-freedom system.
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If a torque Fd is applied to the mounted mass as shown and then is released, the equation
of motion is

d2h
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where K
s
is the spring constant of the beam in resistance to the change of the slope at the

middle point and it can be shown that
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From the solution of equation (47), the circular frequency is
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as given by equation (46).

4.2. ANTISYMMETRIC MODE FREQUENCIES FOR TWO EXTREME CASES OF THE

MOUNTED MASS

There are two limiting values of the mounted mass, m: in"nite and zero. From equation
(44), K"0 and R respectively. These two cases are discussed below.

Case A: m approaches in"nity. Physically, this means that the mounted mass is extremely
large in comparison with the mass of the beam, so that the midpoint of the beam is
essentially "xed. Since K"0, equation (43) becomes,

tanhb
n
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n
.

This is the frequency equation for a beam simply supported at one end and built in at the
other end [3]. The roots of this equation are, approximately, given by the expression

b
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The root b
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is degenerated to zero as K approaches zero.
Case B: m approaches zero. This means that there is no mass mounted on the beam. Since

K approaches in"nity, for "nite value of b, from equation (43), one obtains
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These are the roots of the frequency equation for the antisymmetric modes of a simply
supported beam [1].

5. NUMERICAL RESULTS

For a beam with mass ratio R"1 and K"500 in equation (44), the "rst six modes based
on equations (37), (39), and (40) for odd symmetric modes and equations (38), (41) and (42)
for even antisymmetric modes are presented in Figure 5.
Figure 5. The "rst six normal modes for R"1, K"500, and s/l"0.
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From equation (17), the in#uence of the rotatory inertia of a beam depends on the
slenderness ratio s/l and the frequency parameter b

n
. For small s/l ratio and low frequency,

the e!ect may be neglected. In order to see this e!ect on normal modes, the "fth and sixth
modes for beams with s/l"0 and 0)05 are shown in Figure 6 for R"1 and K"500.

The roots, b
n
, for s/l"0)05, and di!erent R values and for the 1st, 5th, and 9th symmetric

modes from equation (24) have been computed and given in Table 1. b
n

values for the 2nd,
6th, and 10th antisymmetric modes for di!erent K values obtained from equation (25) are
listed in Table 2.

For the same ranges of R and K but for s/l"0, b
n

values are obtained from equations
(37) and (43), and tabulated in Tables 3 and 4 respectively. These results are also depicted in
Figures 7 and 8, in which the results given in Tables 1 and 2 are also denoted by dotted lines.

For the "rst and second modes, the b
1

and b
2

values for s/l"0 and 0)05 are so close, as
seen from the tables, that no di!erence can be observed, in Figures 7 and 8. Therefore, for
the basic modes the rotatory inertia of the beam, practically, may be neglected.
Figure 6. The (a) "fth and (b) sixth normal modes for R"1, K"500, s/l"0 and s/l"0)05.



TABLE 1
b
n

values of symmetric modes for s/l"0)05

n R"0 R"1
4

R"1 R"2 R"3 R"4 R"5 R"R

1 1)561 1)413 1)189 1)047 0)962 0)904 0)860 0)785
5 6)965 6)705 6)555 6)515 6)498 6)490 6)486 6)465
9 11)539 10)567 10)503 10)488 10)482 10)478 10)477 10)468

TABLE 2
b
n

values of antisymmetric modes for s/l"0)05

n K"0 K"1 K"3 K"10 K"50 K"150 K"500 K"1500 K"5000 K"R

2 0 1)104 1)445 1)917 2)597 2)888 3)013 3)050 3)064 3)069
6 6)465 6)467 6)470 6)482 6)547 6)723 7)247 7)753 8)023 8)040

10 10)469 10)470 10)470 10)472 10)484 10)515 10)633 10)950 11)328 11)511

TABLE 3
b
n

values of symmetric modes for s/l"0

n R"0 R"1
4

R"1 R"2 R"3 R"4 R"5 R"R

1 1)571 1)419 1)191 1)048 0)963 0)904 0)860 0)785
3 4)712 4)363 4)120 4)037 4)003 3)981 3)975 3)927
5 7)854 7)406 7)207 7)134 7)113 7)103 7)096 7)069
7 10)996 10)470 10)297 10)256 10)242 10)234 10)229 10)210
9 14)137 13)575 13)421 13)387 13)376 13)370 13)367 13)352

TABLE 4
b
n

values of antisymmetric modes for s/l"0

n K"0 K"1 K"3 K"10 K"50 K"150 K"500 K"1500K"5000 K"R

2 0 1)104 1)446 1)921 2)624 2)940 3)080 3)121 3)136 n
4 3)927 3)935 3)952 4)011 4)341 4)947 5)739 6)106 6)213 2n
6 7)069 7)070 7)073 7)083 7)142 7)303 7)877 8)747 8)256 3n
8 10)210 10)210 10)211 10)215 10)234 10)283 10)478 11)094 11)936 4n

10 13)352 13)352 13)352 13)354 13)362 13)384 13)465 13)738 14)666 5n
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6. CLOSING REMARKS

A comprehensive study on the lateral vibration of a simply supported beam carrying
a concentrated mass at the center of beam has been made. It has been found that it is not
necessary to limit the vibration to either symmetric or antisymmetric vibration, beforehand.
They will emerge from the general approach.



Figure 7. b}R curves for symmetric modes.

Figure 8. b}K curves for antisymmetric modes.
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It has been shown that the frequencies of symmetric modes depend on R, the ratio
between the mass carried and the mass of the beam. The antisymmetric frequencies are
a function of the value K which, in addition to the value R, is also a function of the moment
of inertia of the carried mass about an axis though its center.

When the e!ect of the moment of inertia of the beam is included, s/lO0, the frequencies
of both symmetric and antisymmetric for high modes are lower than those when s/l"0, as
seen from Figures 7 and 8. The e!ect is quite signi"cant. It is shown in these "gures that the
dotted line curves for the 9th and 10th frequencies for s/l"0 ) 05 are very close to those of
the 7th and 8th modes for s/l"0 respectively. For large K and antisymmetric modes, the
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10th frequency for s/l"0)05 could be lower than the 8th frequency for s/l"0. It may be
concluded that for high modes vibration, both symmetric and antisymmetric, the rotatory
inertial e!ect needs to be taken into consideration.
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