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1. INTRODUCTION

The free vibration of a simply supported beam with a constant cross-sectional area carrying
a concentrated rigid mass at the mid-point of the beam has been studied in two manners:
The first way treated the problem as a single-degree-of-freedom system by neglecting the
mass of the beam [1]. The second method included the mass of the beam and treated
the configuration as a continuous elastic system [2-4]. In these treatments only the
symmetrical vibration of the beam was considered.

Restricting this system to vibrate in symmetrical modes simplified this problem and made
unnecessary any consideration of the rotatory inertia of the mounted mass. But if this
system is excited by a force applied anywhere on the system other than at the mid-span, or
by a couple, antisymmetric vibration modes will be produced.

In this study, this problem is approached from the general case, allowing the
concentrated mass to deflect in the z direction and also to rotate about its central axis which
is parallel to the y-axis in Figure 1. A general solution including both the rotatory inertia of
the beam and of the concentrated mass is obtained by applying elementary beam theory in
which the effect of transverse shear deformation is neglected. The latter effect may be
significant but was omitted both for simplicity and because it was desired to isolate the
effect of rotatory inertia.

The solutions with the rotatory inertia of the beam being neglected are deduced from the
general solutions. The antisymmetric mode frequencies for two extreme cases of mounted
mass are discussed. Roots of the frequency equations are obtained and plotted for certain
ranges of parameters involving the ratio of the concentrated mass to the mass of the beam
and its moments of inertia.

2. FORMULATION OF THE PROBLEM

The reference co-ordinates for this system are oriented as shown in Figure 1. The
xy-plane coincides with the neutral plane of the undeflected beam. Consider the whole beam
as two spans each of length /2.

The positive values of bending moment M, shear force V, deflection W, and rotation 6 of
the beam are shown in Figure 2. The subscripts 1 and 2 indicate the corresponding spans.
When no subscript is given, they apply to both spans.
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Figure 1. The co-ordinates of the system.
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Figure 2. The conventions.

The equation for the lateral vibration of the beam may be given in the following form [5]:

oW *wW oW
2 2
_ = 1
CoE Y TS e (0
where
a* = EI,/JpA and s*=1,/A, )

E is the modulus of elasticity, p, the mass density, and I, is the moment of inertia of the
beam with cross-sectional area A4, hence s is the radius of gyration and ¢ is the time.

The boundary conditions at both ends of the beam are that the deflections and moments
vanish:

W

W =0 d —El,—5
an b a2

=0 atx=0. (3, 4)

The conditions of continuity at the middle are that the deflections are equal and slopes
equal but having opposite directions:

Wl == W2 at x = 1/2, (5)
and
oWy ow, owy oW,
=— =0 atx=1/2 6
@xl 5x2 @xl + axl arx / ( )

By applying the equation of motion in the z direction to the free body of the concentrated
mass, m at the mid-point as shown in Figure 3,

2 F, =ma,,
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Figure 3. The free body of the concentrated mass.

where F, and a, are force and acceleration of the mass in the z direction respectively. One
has

EI Gl + EI il W + pl W + pl W at x = 1/2
=m X =
o T g a2 TP ax o TP axy 00
which, by using equation (6), becomes
3 3
W, 3w, 2w,
EI EIl tx=1/2. 7
b (3 ;i; + b axg 6 2 at x / ()

The equation for rotatory motion of the concentrated mass about its central axis and
parallel to y-axis is

M, =1,
in which o is the angular acceleration, takes the form
o*w 0*W,

EI — EI 2 OW,
= —mr
Pox2 PUoxz 0x, 02

at x = 12, )

where 7 is the radius of gyration of the mounted mass with respect to its central axis.

3. THE GENERAL SOLUTION

Using the method of separation of variables, let

=Y X ()Tt
Equation (1) results in
X"+ kis* X, — ki X, =0, T, +prT, =0, 9, 10)
where a prime indicates differentiation with respect to x, a dot with respect to time ¢, and

ke = pa/a, (11)

where p, is the circular frequency.
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The solutions of equations (9) and (10) are, respectively [6],

X, = C,cosho,k,x + D,sinha,k,x + F,cos k,x/x, + H,sin k,x/a,, (12)
T, = A,cosp,t + B,sinp,t, (13)

where
o, = [(kys*/4 + DY? — k2s?/2]12 (14)

and A4,,B,,C,,D,, F,, and H, are arbitrary constants.
Because of the boundary conditions of equations (3) and (4), C, = F, = 0, the solution of
equation (12) is reduced to

X, = D,sinho,k,x + H,sin k,x/o,,

The solutions for each span become

X1, = Dy,sinha,k,x; + Hy,sink,x,/a,, (15)
X5, = D,,sinh ok, x, + H,, sink,x,/a,. (16)
Let k,l/2 = B, hence
o, = {[AGs/l* By + 11172 — 2As/D*Br} ' (17)
and let the mass ratio
R = m/my = m/pAl. (18)

By using solutions (15) and (16), conditions (5) and (6) become
(D1y — Dyy)sinho,f, + (Hy, — Hyy)sin /o, = 0, (19)
a(Dy, + D»,)cosha,fB, — (Hy, + H,,)cos B,/o, = 0. (20
The equations of motion (7) and (8) take the forms

OCr?(l)ln + D2n) cosh oCrlﬁn - (Hln + H2n) Cos ﬁn/an

= - 2Rﬁn(D1n Sinh O‘nﬁn + Hln Sin Bn/an)ar? (21)
O(3(D1n - D2n sinh OCnﬂn - (Hln - H2n) Sil’l ﬁn/an
= 8R(r/1)*B(ota D1, cOSh o, B, + 04, H 1, COS f,/2%). (22)

From the above four equations, the frequency equation is obtained for the non-trivial
solution of four constants involved, and has the following form, since a, # 0;

[Rﬁn(xn((xr% tanh o(nﬁn — tan ﬁn/(xn) - (1 + O(:)],
[4R(r/])*Bio,(2 tan /o, — tanho,B,) — (1 + o) tan B,/o, tanh o, 8,] = 0. (23)

This equation may be separated into two parts, each of which is equated to zero. The first
part is

RpB,o,(02 tanh o, 8, — tano,/f,) — (1 + o) = 0. (24)
When the second part is divided by tanha,f, tan «,,/f3,, it becomes
4R(r/1)* Bot, (0 coth o, B, — cota,/B,) — (1 + o) = 0. (25)
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From the four equations (19)-(22), the following ratio is obtained:

D1y/D2y =1 — [8R(r/)* o, /(1 + 05)]{or; cothos,B,

— (H1,/D1y)[cos (By/a,)/sinh e, B,)1}. (26)
From equations (19-22) and using equation (24), one has
Hy,/D1, = H3,/D3, = — o, cosh o, ,/cos (B,/,). (27)
Substituting this result into equation (26), one obtains
Dy,/D;,=1 or Dy,=D,, (28)
Then, the normal functions (15), (16) take the forms
X 14x1) = Dy, {sinha,k,x; — [o, cosh o, f,/cos (B,/a,)] sin (k,x /o)1), (29)
Xaulx2) = X 1,(x2). (30)

Thus, the normal mode functions resulting from the use of frequency equation (24) are
symmetrical with respect to the middle point of the beam; equation (24) is, therefore, termed
the frequency equation for symmetric modes.

If instead of equation (24), equation (25) is used in equation (26), the ratios become

H,,/D,, = H,,/D,, = — sinha,f,/sin(f,/a,), D,,/Dyy=— 1. (32, 33)

For these ratios, the mode functions take the forms
X 1.x1) = Dy, {sinh ok, x; — [sinh o, f,/sin (f,/o,)] sin (k,x1/ot,)}, (34
Xoulx2) = — Xu(x2). (35)

These vibration modes have a nodal point at the middle of the beam and are
antisymmetrical with respect to this point. These modes, therefore, are referred to as
antisymmetric modes, and equation (25) is called the antisymmetric mode frequency
equation.

The determination of the roots of the frequency equations (24) and (25) will be discussed
later. However, it should be noted that these roots when arranged in ascending order arise
alternately with the lowest, or fundamental root being derived from equation (24). Thus, the

symmetric modes are associated with n = 1,3,5,..., and the antisymmetric modes with
n=24,6,....
The final solution for lateral vibration of the first half span of the beam is
Wy= )  (A,cospt+ B,sinp,)Xy, + Y (A,cosp,t + B,sinp,0)Xy,. (36)
n=1,3,5,... n=2,4,6,...

The constants A, and B, are to be determined by initial conditions. The normal functions,
X1, have been determined by equation (29) for odd n and equation (34) for even n. When
equations (30) and (35) are used for X,,, the deflection W, for the other half span can be
obtained.

When the rotatory inertia of the beam is neglected, s/l = 0; hence, from equation (14),
o, = 1, the frequency equations (24) and (25) are simplified. The equation for symmetric
modes is

Rp,(tanfB, —tanh fB,) —2 =0 (37)
and that for antisymmetric modes is

2R(r/l)f(coth B, — cot f,) — 1 = 0. (38)
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The normal mode equations for the symmetric case are
X1.(x1) = Dy,[sinh k,x; — (cosh f,/cos f,)sin k,x ], (39)
Xau(x2) = X 1,(x2) (40)
and for the antisymmetric case they are
X1,xy) = Dy,[sinh k,x; — (sinh 8,/sin f3,) sin k,x{], 41)
Xaulx2) = — X1u(x2). (42)

The final deflection solutions are the same as given in equation (36).
Equations (37) and (39), (40) agree with the results presented in reference [3].

4. DISCUSSION OF FREQUENCY EQUATION

It will be shown that the effect of the rotatory inertia of the beam vibration is appreciable
for second and higher modes only, the discussion given will be for the basic mode with this
effect neglected.

Furthermore, since the discussion of the frequency equation associated with the
symmetric mode vibration has been given in reference [2], the antisymmetric frequency
equation alone will be discussed herein.

4.1. APPROXIMATE FORMULA FOR THE LOWEST ANTISYMMETRIC MODE FREQUENCY
The frequency equation for antisymmetric modes, equation (25) may be written as
K = B (coth B, — cot B,), (43)
where
K = 1/[2R(r/D)*] = my[*/(2mr?). (44)
For the lowest frequency, f,, for f, <m,
coth B, = 1/B, + B2/3 — B3/45 + 2B5/945 — B] /4725 + 2f5/93555 — ---,
cot B, = 1/B, — B2/3 — B3/45 — 2B5/945 — B] /4725 — 285 /93555 — ---.
Substituting these series into equation (43), one has
K = B3(2B,/3 + 4B5/945 + 4/33/93555 + ---).
If only the first term is kept, then
B = (3K/2)"™. (45)

It will be shown later that the results obtained from this simple formula are quite
satisfactory.
From equations (11), (17) and (44), the circular frequency is

p> = a(2p, /) = (12EL /1)), (46)

This result may also be obtained by considering the problem as a single-degree-of-
freedom system as shown in Figure 4.
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Figure 4. A single-degree-of-freedom system.

If a torque Fd is applied to the mounted mass as shown and then is released, the equation
of motion is

d?0

dt
where K is the spring constant of the beam in resistance to the change of the slope at the
middle point and it can be shown that

K, = 12EI,/L.
From the solution of equation (47), the circular frequency is
P2 = (I<S/Im)1/2 = (IZEIb/Im)l/za

as given by equation (46).

4.2. ANTISYMMETRIC MODE FREQUENCIES FOR TWO EXTREME CASES OF THE
MOUNTED MASS

There are two limiting values of the mounted mass, m: infinite and zero. From equation
(44), K =0 and oo respectively. These two cases are discussed below.

Case A: m approaches infinity. Physically, this means that the mounted mass is extremely
large in comparison with the mass of the beam, so that the midpoint of the beam is
essentially fixed. Since K = 0, equation (43) becomes,

tanh 8, = tan f3,.

This is the frequency equation for a beam simply supported at one end and built in at the
other end [3]. The roots of this equation are, approximately, given by the expression

Bo=m2—3/4n, n=4,68,.... (48)

The root f3, is degenerated to zero as K approaches zero.
Case B: m approaches zero. This means that there is no mass mounted on the beam. Since
K approaches infinity, for finite value of f5, from equation (43), one obtains

cotf, =— 0.
Therefore,

p.=nm/2, n=2,4,6,.... 49)
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These are the roots of the frequency equation for the antisymmetric modes of a simply

supported beam [1].

5. NUMERICAL RESULTS

For a beam with mass ratio R = 1 and K = 500 in equation (44), the first six modes based
on equations (37), (39), and (40) for odd symmetric modes and equations (38), (41) and (42)

for even antisymmetric modes are presented in Figure 5.

e,
et

Figure 5. The first six normal modes for R = 1, K = 500, and s// = 0.
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From equation (17), the influence of the rotatory inertia of a beam depends on the
slenderness ratio s/l and the frequency parameter f3,. For small s/l ratio and low frequency,
the effect may be neglected. In order to see this effect on normal modes, the fifth and sixth
modes for beams with s/l = 0 and 0-05 are shown in Figure 6 for R = 1 and K = 500.

The roots, f8,, for s/l = 0-05, and different R values and for the 1st, Sth, and 9th symmetric
modes from equation (24) have been computed and given in Table 1. 8, values for the 2nd,
6th, and 10th antisymmetric modes for different K values obtained from equation (25) are
listed in Table 2.

For the same ranges of R and K but for s/l = 0, 8, values are obtained from equations
(37) and (43), and tabulated in Tables 3 and 4 respectively. These results are also depicted in
Figures 7 and 8, in which the results given in Tables 1 and 2 are also denoted by dotted lines.

For the first and second modes, the f; and f, values for s/l = 0 and 0-05 are so close, as
seen from the tables, that no difference can be observed, in Figures 7 and 8. Therefore, for
the basic modes the rotatory inertia of the beam, practically, may be neglected.

12

(b)

Figure 6. The (a) fifth and (b) sixth normal modes for R = 1, K = 500, s/l = 0 and s/I = 0-05.
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TasBLE 1
B values of symmetric modes for s/l = 0-05

n R=0 R=% R=1 R=2 R=3 R=4 R=5 R=w
1 1-561 1-413 1-189 1047 0-962 0-904 0-860 0-785
5 6965 6705 6555 6-515 6-498 6-490 6-486 6465
9 11-539  10-567  10-503 10488  10-482 10-478 10477 10468

TABLE 2
P values of antisymmetric modes for s/l = 0-05

n K=0 K=1 K=3 K=10 K=50 K=150 K=500 K=1500K =5000 K = o

2 0 1-104 1-445 1917  2:597  2:888 3013 3-050 3:064 3069
6 6465 6467 6470 6482 6547 6723 7247 7-753 8023 8040
10 10469 10470 10470 10472 10484 10-515 10-633 10950 11-328 11-511

TABLE 3
B values of symmetric modes for s/l =0

n R=0 R=1 R=1 R=2 R=3 R=4 R=5 R=ow
1 1571 1419 1-191 1048 0-963 0-904 0860  0-785
3 4712 4363 4120 4-037 4-003 3981 3975 3927
5 7854 7406 7207 7134 7113 7-103 7096 7069
7 10996 10470 10297 10256 10242 10234 10229  10-210
9 14137 13575 13421 13387 13376 13370 13367 13-352

TaBLE 4
B values of antisymmetric modes for s/l = 0

K=0 K=1 K=3 K=10 K=50 K=150 K =500K =1500K =5000 K= oo

3

0 1-104  1-446 1921 2:624 2940 3080 3121 3136 A
3927 3935 3952 4011 4341 4947 5739 6106 6213 2n
7069 7070 7073 7083 7142 7303 7877 8747 8256 3n

g 10210 10210 10211 10215 10234 10283 10478 11094 11936 4n
10 13352 13352 13352 13:354 13:362 13384 13465 13-738 14-666 5w

[o) Q¢ SN S

6. CLOSING REMARKS

A comprehensive study on the lateral vibration of a simply supported beam carrying
a concentrated mass at the center of beam has been made. It has been found that it is not
necessary to limit the vibration to either symmetric or antisymmetric vibration, beforehand.
They will emerge from the general approach.
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Figure 7. f-R curves for symmetric modes.
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Figure 8. f-K curves for antisymmetric modes.

It has been shown that the frequencies of symmetric modes depend on R, the ratio
between the mass carried and the mass of the beam. The antisymmetric frequencies are
a function of the value K which, in addition to the value R, is also a function of the moment
of inertia of the carried mass about an axis though its center.

When the effect of the moment of inertia of the beam is included, s/l # 0, the frequencies
of both symmetric and antisymmetric for high modes are lower than those when s/l = 0, as
seen from Figures 7 and 8. The effect is quite significant. It is shown in these figures that the
dotted line curves for the 9th and 10th frequencies for s/l = 0-05 are very close to those of
the 7th and 8th modes for s/l = 0 respectively. For large K and antisymmetric modes, the
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10th frequency for s/l = 0-05 could be lower than the 8th frequency for s/l = 0. It may be
concluded that for high modes vibration, both symmetric and antisymmetric, the rotatory
inertial effect needs to be taken into consideration.
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